OpenEnterprise Signal View Reference Guide (V2.83)
Contents

1 Signal View ...1
 1.1 Configuration Mode ..1
 1.1.1 Accessing the Property Pages ..2
 1.1.2 General Page ...2
 1.1.2.1 Floating Point Format ..2
 1.1.2.2 Width ..2
 1.1.2.3 Precision ..3
 1.1.2.4 Exponent ..3
 1.1.2.5 Example ..3
 1.1.2.6 Allow Runtime Configuration ..3
 1.1.2.7 Refresh Rate ..3
 1.1.3 Signal Search Page ..3
 1.1.3.1 ControlWave Instance - Variable Search ...4
 1.1.3.1.1 RTU ...4
 1.1.3.1.2 Instance ...4
 1.1.3.1.3 Variable ...5
 1.1.3.1.4 ControlWave Instance - Variable Result ..5
 1.1.3.2 ControlWave Full String Search ..5
 1.1.3.2.1 RTU ...5
 1.1.3.2.2 String ...6
 1.1.3.2.3 ControlWave Full String Search Result ...6
 1.1.3.3 ACCOL Base-Ext-Attr Search ...6
 1.1.3.3.1 RTU ...7
 1.1.3.3.2 Base ..7
 1.1.3.3.3 Extension ..7
 1.1.3.3.4 Attribute ..7
 1.1.3.3.5 ACCOL Search Result ...7
 1.1.4 Signal Filters Page ...8
 1.1.4.1 Quality Bits ..8
 1.1.4.2 Alarm ...8
 1.1.4.3 Control ..8
 1.1.4.4 Manual ..9
 1.1.4.5 Questionable ..9
 1.1.4.6 Logical ..9
 1.1.4.7 High ..9
 1.1.4.8 High-High ..9
 1.1.4.9 Low ...9
 1.1.4.10 Low-Low ..9
 1.1.4.11 In Alarm State ..9
 1.2 Security ..9
 1.2.1 OpenBSI Security ..9
 1.2.2 OpenEnterprise Security ..10
 1.3 Runtime Mode ...10
 1.3.1 Signal Column ...11
 1.3.2 Alarm Bit Column ...11
 1.3.3 Control Bit Column ...11
 1.3.4 Manual Bit Column ...11
Signal View

1.3.5 Value Column

1.3.6 Units Column

1.3.7 Signal Details Dialog

- **1.3.7.1** Units Column
- **1.3.7.2** Ack Alarm
- **1.3.7.3** Signal Details with Alarm Data
- **1.3.7.4** Status Bar Section 1
- **1.3.7.5** Status Bar Section 2
- **1.3.7.6** Status Bar Section 3
- **1.3.7.7** Status Bar Section 4
- **1.3.7.8** Status Bar Section 5

1.3.8 Set Quality Bits Message

1.3.9 Change Signal Value Dialog

1.4 Signal View and OEMenus

- **1.4.1** Signal View Aliases
 - **1.4.1.1** Source and Target Views
 - **1.4.1.2** Aliases and Parameters
 - **1.4.1.2.1** Aliases
 - **1.4.1.2.2** Parameters

- **1.4.2** Examples
 - **1.4.2.1** OEDesktop Custom Menu
 - **1.4.2.1.1** Create the Signal View file
 - **1.4.2.1.2** Open OEDesktop Configuration Pages
 - **1.4.2.1.3** Create a new OEDesktop Custom Menu
 - **1.4.2.1.4** Configure the Menu Command
 - **1.4.2.1.5** New Menu Runtime Example
 - **1.4.2.2** Alarm View Custom Menu
 - **1.4.2.2.1** Create the Signal View file
 - **1.4.2.2.2** Add OEMenu to Alarm View File
 - **1.4.2.2.3** Alarm View Menu Runtime Example
 - **1.4.2.3** Graphics Custom Menu
 - **1.4.2.3.1** Create the Signal View file
 - **1.4.2.3.2** Create a Dynamic Object
 - **1.4.2.3.2.1** Using the Symbol Library - Tanks
 - **1.4.2.3.2.2** Using the Symbol Library - Cutaway Dynamic
 - **1.4.2.3.2.3** Add an OPC Tag as the Data Source
 - **1.4.2.3.2.4** Embed the Aliases into the OPC Tag
 - **1.4.2.3.3** Configure the Custom OEMenu
 - **1.4.2.3.3.1** Create an OEMenus Pick Object
 - **1.4.2.3.3.2** Define the Target Alias
 - **1.4.2.4** Graphics Menu Runtime Example
 - **1.4.2.4.1** Create a new Alarm View menu
 - **1.4.2.4.2** Select the Alarm View Custom Menu
 - **1.4.2.4.3** Select the Graphics View Custom Menu
 - **1.4.2.4.4** The Signal View is Opened

2 Index

- **2.1** Signal View Aliases
- **2.2** Change Signal Value Dialog
- **2.3** Set Quality Bits Message
- **2.4** New Menu Runtime Example
- **2.5** Create a new Alarm View menu
- **2.6** Select the Alarm View Custom Menu
- **2.7** Select the Graphics View Custom Menu
- **2.8** The Signal View is Opened

- ii -
1 Signal View

The Signal View connects directly with OpenBSI to read and write data to Bristol RTUs. Note that because of this, changes made through Signal View are not recorded in the OpenEnterprise Event Log.

1.1 Configuration Mode

In order to configure the Signal View component, it must be in Configuration Mode. The Signal View’s Property pages are then available.

1. Accessing the Property Pages
2. General Page
3. Signal Search Page
4. Signal Filters Page
1.1.1 Accessing the Property Pages

To configure any View, the component must be placed into configure mode. This can be done in three ways from within the Desktop.

1. Select the Desktop>>Mode>>Configure option from the Desktop's menu bar. This places every window in the Desktop into configure mode.

2. With the View window in focus, select the File>>Mode>>Configure option from the Desktop's menu bar. This places the selected component only into configure mode.

3. With the View window in focus, press the [Ctrl] and [M] keys on the computer keyboard simultaneously. This will place the selected View into configure mode. Doing the same again will toggle it back into runtime mode.

Once the View component is in configure mode, the Property Pages (which is where configuration takes place) can be accessed by right clicking on the View and selecting the 'Properties' option, as shown in the example below:-

![Property Pages Example]

1.1.2 General Page

This is the page that is displayed by default, when the Signal View is placed into configure mode. It enables the user to configure floating point number format, access to the Property pages and refresh rate during runtime.

1.1.2.1 Floating Point Format

This section has options for configuring the Floating point format of numbers that appear in the 'Value' column of the Signal View when in runtime.

1.1.2.2 Width

The number of spaces reserved from the left of the value column for the display of the number.
This value does not truncate a number. It allows blank spaces to be displayed on the left of the number.

In the image displayed, the number of spaces occupied by the number 1 would be 5 (i.e. 1.000 - the decimal point counts as a space).

If the width is set to 5 spaces, and precision is set to 3, then the number will always begin on the extreme left of the value column, since as it enlarges, it will add a space to the right of the number:-

If the width were increased to 6, then an empty space is introduced to the left of the numbers below 10 as they appear in the value column.

1.1.2.3 Precision
This defines the number of decimal places to be displayed by the Signal View.

1.1.2.4 Exponent
The type of numerical display: -
- f = 'floating point' format.
- e = exponential.
- g = 'best fit' format.

1.1.2.5 Example
Signal View gives an example of how the configured floating point formatting will look within the value column in runtime.

1.1.2.6 Allow Runtime Configuration
A check here will enable the 'Properties' option to be available in the context menu when in runtime.

1.1.2.7 Refresh Rate
This figure dictates the rate at which the Signal View will update its data in runtime.

1.1.3 Signal Search Page
This page enables the user to select the type of RTU and filter options. Selection of the radio buttons on the left of the dialog changes the Search Criteria options on the right of the dialog accordingly.
1.1.3.1 ControlWave Instance - Variable Search

The **ControlWave Instance/Variable Search** radio button enables search criteria to be entered for the Instance and Variable parts of ControlWave signals. Wildcard characters are allowable within the Instance and Variable fields, (* for multi-character wildcarding, and ? for single character matching). A blank field is interpreted as a multi-character wildcard.

1.1.3.1.1 RTU

The user must first specify an RTU from which to view signals. When in Runtime, the Signal View will display any signals from the specified RTU that meet the filter conditions. All available RTUs should be automatically displayed in this drop-down list for selection.

1.1.3.1.2 Instance

The **Instance** part of a ControlWave signal is defined as being all characters prior to the last full-stop, (period).
1.1.3.1.3 Variable

The Variable part of a ControlWave signal name is all characters after the last full-stop, (period).

1.1.3.1.4 ControlWave Instance - Variable Result

This is the result of the filter as applied in the Instance and Variable fields above. The filter returns all signals with an instance of A1 and with the characters ALARM_L at the beginning of the variable name.

ControlWave Instance - Variable Search

1.1.3.2 ControlWave Full String Search

The ControlWave Full String Search filter option enables a search string to be entered which is matched with the whole ControlWave signal name. Wildcard characters are allowable within the String field, (* for multi-character wildcarding, and ? for single character matching). A blank field is interpreted as a multi-character wild card.

1.1.3.2.1 RTU

The user must first specify an RTU from which to view signals. When in Runtime, the Signal View will display any signals from the specified RTU that meet the filter conditions. All available RTUs should be automatically displayed in this drop-down list for selection.
1.1.3.2.2 String

The String field applies to the whole ControlWave signal name (Instance and variable).

1.1.3.2.3 ControlWave Full String Search Result

This is the result of the full string filter shown in the ControlWave Full String Search page.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>A</th>
<th>C</th>
<th>M</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>50.00</td>
</tr>
<tr>
<td>2.4: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>25.00</td>
</tr>
<tr>
<td>3.4: ALARM_LIMIT_H</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>75.00</td>
</tr>
<tr>
<td>4.4: ALARM_LIMIT_HH</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>100.00</td>
</tr>
<tr>
<td>5.3: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>50.00</td>
</tr>
<tr>
<td>6.3: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>25.00</td>
</tr>
<tr>
<td>7.3: ALARM_LIMIT_H</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>75.00</td>
</tr>
<tr>
<td>8.3: ALARM_LIMIT_HH</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>100.00</td>
</tr>
<tr>
<td>9.2: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>50.00</td>
</tr>
<tr>
<td>10.2: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>25.00</td>
</tr>
<tr>
<td>11.2: ALARM_LIMIT_H</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>75.00</td>
</tr>
<tr>
<td>12.2: ALARM_LIMIT_HH</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>100.00</td>
</tr>
<tr>
<td>13.1: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>50.00</td>
</tr>
<tr>
<td>14.1: ALARM_LIMIT_L</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>25.00</td>
</tr>
<tr>
<td>15.1: ALARM_LIMIT_H</td>
<td>AI</td>
<td>CE</td>
<td>ME</td>
<td>75.00</td>
</tr>
</tbody>
</table>

ControlWave Full String Search

1.1.3.3 ACCOL Base-Ext-Attr Search

THE ACCOL Base-Ext-Attr search enables a search filter to be applied to any or all of the Base, Extension or Attribute parts of a NW3000 signal name. Wildcard characters are allowable within the String field, (* for multi-character wildcarding, and ? for single character matching). A blank field is interpreted as a multi-character wildcard.
1.1.3.3.1 RTU

The user must first specify an RTU from which to view signals. When in Runtime, the Signal View will display any signals from the specified RTU that meet the filter conditions. All available RTUs should be automatically displayed in this drop-down list for selection.

1.1.3.3.2 Base

Filter on the Base part of the signal name for a NW3000 RTU. Wildcard characters are allowable (* for multi-character wildcarding, and ? for single character matching).

1.1.3.3.3 Extension

Filter on the Extension part of the signal name for a NW3000 RTU. Wildcard characters are allowable (* for multi-character wildcarding, and ? for single character matching).

1.1.3.3.4 Attribute

Filter on the Attribute part of the signal name for a NW3000 RTU. Wildcard characters are allowable (* for multi-character wildcarding, and ? for single character matching).

1.1.3.3.5 ACCOL Search Result

This is the result of the ACCOL Base-Extension-Attribute search. The filter was set to find only signals with an Extension of *LEVEL*.
Signal Search Page

1.1.4 Signal Filters Page

This page allows the user to apply further filters based on the quality bit and alarm state of signals.

Signal View Overview

1.1.4.1 Quality Bits

The first section of the Signal Filters dialog relates to the 'Quality Bits' of a signal. These are Alarm enable/inhibit, Control enable/inhibit, Manual enable/inhibit, and Questionable bit set or not.

1.1.4.2 Alarm

Available options for filtering are 'None', 'Enable' or 'Inhibit'. For example, if 'Enable' was chosen for this control, the Signal View would filter signals on the basis of whether their Alarm quality bit was set to 'Enable'.

1.1.4.3 Control

Available options for filtering are 'None', 'Enable' or 'Inhibit'. For example, if 'Enable' was chosen for this control, the Signal View would filter signals on the basis of whether their Control quality bit was set to 'Enable'.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>A.</th>
<th>C.</th>
<th>M.</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANK3 LEVEL</td>
<td>AE</td>
<td>CE</td>
<td>ME</td>
<td>55.00</td>
<td>METRES</td>
</tr>
<tr>
<td>TANK4 LEVEL</td>
<td>AE</td>
<td>CE</td>
<td>ME</td>
<td>41.00</td>
<td>METRES</td>
</tr>
<tr>
<td>TANK5 LEVEL</td>
<td>AE</td>
<td>CE</td>
<td>ME</td>
<td>25.00</td>
<td>METRES</td>
</tr>
<tr>
<td>TANK6 LEVEL</td>
<td>AE</td>
<td>CE</td>
<td>ME</td>
<td>13.00</td>
<td>METRES</td>
</tr>
</tbody>
</table>

1.1.4.4 Manual

Available options for filtering are 'None', 'Enable' or 'Inhibit'. For example, If 'Enable' was chosen for this control, the Signal View would filter signals on the basis of whether their Manual quality bit was set to 'Enable'.

1.1.4.5 Questionable

Available options for filtering are 'None', or 'Set'. For example, If 'Set' was chosen for this control, any signal which had it's Questionable bit Set would have a question mark after the value.

1.1.4.6 Logical

Checking the 'Logical' check box causes the Signal View to only display logical signals that are in alarm state. When the 'Logical' check box is checked the other check boxes become disabled, since they relate to analogue alarm states.

1.1.4.7 High

Checking this box will cause the Signal View to display analogue signals that have gone into a High alarm state.

1.1.4.8 High-High

Checking this box will cause the Signal View to display analogue signals that have gone into a High High alarm state.

1.1.4.9 Low

Checking this box will cause the Signal View to display analogue signals that have gone into a Low alarm state.

1.1.4.10 Low-Low

Checking this box will cause the Signal View to display analogue signals that have gone into a Low Low alarm state.

1.1.4.11 In Alarm State

This section enables the user to filter the Signal View according to alarm state.

1.2 Security

Since the Signal View ActiveX control connects directly to OpenBSI, but the Signal View window is open in the OEDesktop, which connects to the OpenEnterprise database, there are two levels of security which apply to the Signal View:-

1. OpenBSI security
2. OpenEnterprise security.

Signal View Overview

1.2.1 OpenBSI Security

The OpenBSI security system is built on seven security levels, 0 to 6. Level 0 represents the lowest whilst level 6 is the highest security level possible.

When configuring an RTU, each signal can be programmed with a 'Read' security level and a 'Write' security level.
These are the levels of security needed to be able to read the value of the signal or to write a value to that signal.

In order to integrate the OpenBSI security system with OpenEnterprise, the Signal View has six security tokens corresponding to security levels 1 to 6 in OpenBSI.

Signal View Security

OpenEnterprise Security

1.2.2 OpenEnterprise Security

Signal View security is governed within the OEDesktop environment by OpenEnterprise Workstation Security. The correct application token must be given to each user of the OpenEnterprise Workstation, who needs access to the Signal View component. Below is an example of the Security Configuration Tool open, with a Signal View application token selected, and ready for allocating to a user by the drag-drop method.

The user in this example would be able to log in to OpenBSI (through the Signal View) with the read/write privileges granted to a Security Level 1 user. For more information on OpenEnterprise Token Security and how the Security Configuration Tool works see the Security Configuration Tool documentation.

Signal View Security

OpenBSI Security

1.3 Runtime Mode

When in Runtime mode, and configured, the Signal View looks and behaves very much like the OpenBSI Dataview component, enabling the user to view and change NW3000 or ControlWave signals directly at RTU level.
1.3.1 Signal Column

This column displays the Network 3000 name of the signal without the RTU name prefixing it. Signal names consist of three components: Base, Extension and Attribute. These are separated by a period.

1.3.2 Alarm Bit Column

'A' stands for 'Alarm' and this column displays the status of the signal's alarm setting. Possible values are; Blank, 'AE' - Alarm Enable and 'AI' - Alarm Inhibit.

1.3.3 Control Bit Column

'C' stands for 'Control'. This column displays the status of the signal's control setting. Possible values are; 'CE' - Control Enable and 'CI' - Control Inhibit.

1.3.4 Manual Bit Column

'M' stands for 'Manual'. This column displays the status of the signal's manual setting. Possible values are; 'ME' - Manual Enable and 'MI' - Manual inhibit.

1.3.5 Value Column

This column displays the current value of the signal in engineering units. The text in this column may be followed by a question mark. If this is the case then this signal has been marked as 'Questionable'.

1.3.6 Units Column

If the signal has a units value associated with it, this column will display the units by which the signals value is measured.

1.3.7 Signal Details Dialog

When a signal name is clicked on, this dialog is displayed. It provides more detailed information about the signal, and also enables changes to be made to the signal's value, and acknowledged state, if it is in alarm.
1.3.7.1 Units Column

If the signal has a units value associated with it, this column will display the units by which the signals value is measured.

1.3.7.2 Ack Alarm

When the Ack Alarm button is selected, the alarm is acknowledged and this message is displayed.

1.3.7.3 Signal Details with Alarm Data

When the [Show Alarms>>] button is selected from the Signal Details dialog, the signal's alarms are displayed, as shown below. Click on the [Hide Alarms<<] button to go back to the previous page.
1.3.7.4 Status Bar Section 1

The first, and largest, section of the status bar displays text messages to the user. These messages report the current activity of the Signal View.

1.3.7.5 Status Bar Section 2

This section of the status bar displays the number of signals currently being viewed. If the signal data from a particular query is still being collected then this pane will appear with a cyan background to indicate that the number of signals is incomplete and that more data is still being returned.

1.3.7.6 Status Bar Section 3

This section of the status bar is currently unused.

1.3.7.7 Status Bar Section 4

This section of the status bar shows the security level of the current user.

1.3.7.8 Status Bar Section 5

This section of the status bar displays the number of 'writes' pending. For example, if the user were to change the value of a signal via Signal View, the value displayed in this pane is incremented by one until the signal value change has taken effect.

1.3.8 Set Quality Bits Message

When any of the quality bit values of a signal are selected from the Signal View window, this message is displayed. Selecting the [Yes] button will toggle the value.

1.3.9 Change Signal Value Dialog

This dialog, obtained by selecting a signal's value from the Signal View window enables the user to change the value and quality bits of the selected signal.

For digital signals, the New Value field is a drop-down list containing the two possible values for the signal, and a there is a [Toggle] button, which enables quick toggling of the value.
1.4 Signal View and OEMenus

The Signal View component can be a Target for OEMenus. Signal View filters act as Aliases, which can be resolved by parameters sent from the Source component, so that a Signal View file can be opened, with its filters set based on a selection made from another view. For more details of how OEMenus works, with an explanation of the Aliases available in the Signal View component, please refer to the OEMenus documentation.

1. Signal View Aliases
2. Examples

1.4.1 Signal View Aliases

A full list of the Aliases belonging to the Signal View can be found on the Preset Aliases page of the Menu Editor documentation.

1. Source and Target Views
2. Aliases and Parameters

Signal View and OEMenus

1.4.1.1 Source and Target Views

OEMenus functionality enables custom menus to be created on an OpenEnterprise View component (the Source View) that will open up another View (the Target View), sending Parameters so that when the Target View is opened, it displays relevant data based on what the user selected on the Source View.

1.4.1.2 Aliases and Parameters

Aliases and Parameters are like different sides of the same coin. An Alias is an empty placeholder that has to have its value defined. Once an Alias has its value defined, it can be used as a Parameter. It depends on whether the View is currently a Source or a Target for OEMenus.

1.4.1.2.1 Aliases

Aliases are named placeholders on the Target View, the actual value of which is resolved by the Parameters sent by the Source View through the OEMenus interface. Aliases for most Views depend on the type of data that they display:-

1. Views that access tabular data (SQLView, Alarm View, Alarm Banner etc) have Aliases in the form of column names. The Aliases match the column names.

2. Views that access data in the form of a string (i.e an OPC tag string like OEGraphics or Trend View) use Aliases embedded into the OPC tag. The embedded Alias name is defined by placing it inside << and >> symbols. These symbols mark the Alias. The Aliases are matched with and resolved by parameters passed from the Source View. An example of an Alias embedded into an OPC String would be: "BristolBabcock.BristolOPCServer\"trdb1\".\"nw3000realanalog\"."name:char:<<SIGNALNAME >>","value:float" In the case of OEGraphics, Alias names have to be identified also by the object on which they appear.

3. Views that use strings to apply a filter to data, (i.e. the SQL View Condition string, Notes View Default Recipient) can also use string Aliases marked with << and >>. An example would be <<USER>> or <<DEVICENAME>>.

An Alias on an OEMenus Target View is resolved by Parameters sent to it from an OEMenus Source View. A resolved Alias can be used as a Parameter.
1.4.1.2.2 Parameters

A Parameter is a value on the OEMenus Source View (which could be a resolved Alias, or a Constant value) that is matched with and resolves an Alias on the Target View.

1.4.2 Examples

Here are some examples of using OEMenus with Signal View as a Target.

1. OEDesktop custom menu (Constant Parameters)
2. Alarm View custom menu (Column Parameters)
3. OEGraphics custom menu (String Parameters)

1.4.2.1 OEDesktop Custom Menu

The OEDesktop menu bar allows you to create your own custom menus using the OEMenus interface. When using custom OEMenus from the OEDesktop, Parameters have to be sent as constant values, rather than as column values or as part of an OPC tag, since the OEDesktop does not itself retrieve data directly. This means that you have to know what Aliases to match on the Target View, and you need to send appropriate values as Parameters. These are the steps required to create an OEDesktop custom menu that will open a single Signal View file to display various ControlWave signals.

1. Create the Signal View file.
2. Open the OEDesktop configuration pages.
3. Create a new OEDesktop Custom Menu.
4. Configure the Menu Command.
5. Runtime example

Examples

1.4.2.1.1 Create the Signal View file

Follow these steps to create a Signal View file that will be used as a Target for OEMenus.

1. Open the OEDesktop and log in by selecting Security/Login.
2. Select OEDesktop>New from the OEDesktop menu.
3. Ensure that the **ControlWave Instance/Variable Search** option is selected on the Signal Search page, and that no values are entered into the **Instance** or **Variable** fields.

4. Select **OEDesktop>Save As...** and save the Signal View file to the directory where you will keep your Signal View files.

OEDesktop Custom Menu

Alarm View Custom Menu

1.4.2.1.2 Open OEDesktop Configuration Pages

Select **OEDesktop>Customize...** from the OEDesktop menu bar, as shown in the example below.
OEDesktop Custom Menu

1.4.2.1.3 Create a new OEDesktop Custom Menu

1. On the Menu property page, select the New button, highlighted in the example below.
2. When the dialog appears, type in the name of the new custom menu, and select the
 Configure button, shown highlighted in the image below.

![New Menu Item Dialog](image)

3. You will be presented with the OEMenus configuration interface. Review the OEMenus
 documentation for instructions on how to create custom menus. Here we have created a
 Menu Group called A1 signals, with two Menu Commands off it - All A1 Signals and A1 Signal
 In. The All A1 Signals menu is selected, and the selected Target is OE Signal View. The
 selected Action is Load File with Parameters. To help users to recognize the window, we
 have given it the name All A1 Signals. Now click the Configure button, shown highlighted in
 red in the image below.

![Menu Editor Dialog](image)

OEDesktop Custom Menu

1.4.2.1.4 Configure the Menu Command

After clicking on the Configure button on the Menu Editor dialog, you will be presented with the
Load File with Parameters dialog.

1. Firstly, configure the File Name at the top of the dialog. Click the browse (...) button to the
 right of the File field, and select the Signal View file you just created. The file and path name
 will be entered into the appropriate fields on the dialog.
2. Next, configure the first Target Aliases and their parameters. The first will be the RTU Alias. As you can see because this is an OEDesktop menu, and neither Column or String type Aliases are available as Parameters, we are passing a Constant value as the Parameter.

a. First, add the Target Alias (the rtu filter), then type its intended value into the Parameter Value field as shown in this example (the RTU is named CWM). Note, we are providing a constant value, because we are using the OEDesktop as the Source View, and therefore do not have any Aliases available to use as Parameters. Then click the Add button, highlighted.

b. The rtu Alias, and its value will be entered into the Parameters list, as shown in the example below.
c. Now, in the same way, enter and add the instance and searchstring Aliases and their Parameter values to the Parameters list, as shown in the image below. Note that the searchstring parameter is a wildcard (*) character that will find all signals with an A1 instance. When done close the configuration dialog.

OEDesktop Custom Menu

1.4.2.1.5 New Menu Runtime Example

When you have closed the OEDesktop property pages, you can now test the new custom menu.

1. Firstly, select the All A1 Signals option from the new CWM menu, as shown below.

2. A new window will open within the OEDesktop, showing all ControlWave signals with an A1 instance.
The Alarm View component receives and displays columnar data, so its Aliases are column values. One of the Target Aliases in the Signal View has to be resolved by concatenating the base, extension and attribute values of the signal in alarm from the Alarm View. When resolved on the Source View by a user selection, these column values are matched with Target View Aliases and passed to the Target View via OEMenus. This is a list of steps required to create an OEMenu on an Alarm View that will open a Signal View file, showing the signal selected from the Alarm View.

1. Create the Signal View file
2. Add the OEMenu to an Alarm View file
3. Alarm View Menu Runtime Example

Examples

1.4.2.2.1 Create the Signal View file

Follow these steps to create a Signal View file that will be used as a Target for OEMenus.

1. Open the OEDesktop and log in by selecting **Security> Login**.
2. Select **OEDesktop> New** from the OEDesktop menu.
3. Ensure that the **ControlWave Instance/Variable Search** option is selected on the Signal Search page, and that no values are entered into the **Instance** or **Variable** fields.

4. Select **OEDesktop>Save As...** and save the Signal View file to the directory where you will keep your Signal View files.

OEDesktop Custom Menu

Alarm View Custom Menu

1.4.2.2.2 **Add OEMenu to Alarm View File**

The Source component for the OEMenu is an Alarm View. This is how the Alarm View menu is configured.

1. Create a new Alarm View file. Select **Desktop>New...**
2. Select the Alarm View type of file from the list. We have named the new window **ALARM VIEW** to aid recognition.

3. When the window loads, put it into Configure mode and select the **Properties** context menu.
4. From the General page, select the **Create...** button next to the **OEMenus** label, shown highlighted in the example below.

5. Right click on the Menu item in the Menu Editor and select the **New Command** option.
6. Select **Signal View** as the Target, and **Load with Parameters** as the Action. Then click the **Configure** button, highlighted in red in the example below. Here we have decided to give the window that will be opened by OEMenus the name **SIGNAL VIEW** to aid in recognition.

![Menu Editor](image)

7. On the **Load File with Parameters** dialog, firstly, configure the Target file, using the file browse (…) button, highlighted.

![Load file with parameters](image)

8. Then configure the **instance** parameter, as shown.
9. Finally, identify the **searchstring** Alias in the Signal View, and define it by concatenating the **base**, **extension** and **attribute** column values from the Alarm View. The **base**, **extension** and **attribute** columns must have an underscore character between them as shown, to match the actual full signal name.
1.4.2.2.3 Alarm View Menu Runtime Example

This is how the Alarm View custom menu works in Runtime mode.

1. An alarm is selected from the Alarm View, and the new Custom Menu is selected.
2. The custom menu opens the Signal View file, passing the signal name of the alarm to it as a parameter.

Alarm View Custom Menu

1.4.2.3 Graphics Custom Menu

The Graphics View (GraphWorX) component uses Aliases that are embedded into OPC Tag strings, so it works differently to the Alarm View in terms of an OEMenus Source.

1. Create the Signal View file
2. Create a Dynamic object in Graphics View
3. Configure the custom OEMenu
4. Runtime Example

Examples

1.4.2.3.1 Create the Signal View file

Follow these steps to create a Signal View file that will be used as a Target for Graphics View.
1. Open the OEDesktop and log in by selecting **Security> Login**.

2. Select **OEDesktop> New** from the OEDesktop menu.

![Image of the New window in OEDesktop]

3. This time we will use the Full String Search variable, because we then only need to define one Target Alias on the Graphics custom OEMenu. Ensure that the **ControlWave Full String Search** option is selected on the Signal Search page, and that no values are entered into the **String** field.

![Image of the OE Signal View Control Properties]

4. Select **OEDesktop> Save As...** and save the Signal View file to the directory where you will keep your Signal View files.

Graphics Custom Menu

1.4.2.3.2 **Create a Dynamic Object**

This is one way that Dynamic objects are placed into Graphics View displays. Many applications create their own symbol library, but this example uses the symbol library that comes with Graphics View.
1. Create a Tank object from the Symbol library.
2. Add a Dynamic Cutaway object
3. Add an OPC Tag as the Data Source
4. Embed the Aliases into the OPC Tag

Graphics Custom Menu

1.4.2.3.2.1 Using the Symbol Library - Tanks
1. With Graphics View open select the Symbols icon from the main Drawing toolbar.

2. Select the 2_Misc Symbol directory.
3. Select the 3-D ISA Tanks Symbols library.

4. Select the Tank symbol and drag it to the display page.
5. Resize and reposition the Tank symbol on the page.

Create a Dynamic Object

1.4.2.3.2.2 Using the Symbol Library - Cutaway Dynamic

1. Now go back to the symbol library window and double click on the 3-D Dynamic Tank-Cutaways.sdf library.
2. Select the *Freeform Cut-Away* object and drag it to the display page as shown.

3. After resizing and positioning it, right click on it and select the *Edit Symbol* option.
4. Now select the **Property Inspector** option.
5. On the Size tab of the Property pages, select the current Data Source and delete it.

[Image of Property Inspector dialog]

Create a Dynamic Object

1.4.2.3.2.3 Add an OPC Tag as the Data Source

Open a Database Object Viewer instance that is querying the Realanalog table for the signals of interest. Then drag-drop the value of a particular signal into the Data Source window of the Size Property dialog.
Create a Dynamic Object

1.4.2.3.2.4 Embed the Aliases into the OPC Tag

1. We must now edit the OPC Tag to embed the required Aliases into the tag string. Find the primary key part of the tag. This is the name attribute which comes after the tablename (here realanalog) in the OPC string. Select the value that was dropped in and delete it.

2. Now begin embedding the Aliases. First, the RTU name followed by a colon (:) is entered as normal text, then the INSTANCE Alias is created by enclosing it within << and >> symbols. This is how we are going to embed all of the required Aliases into the OPC tag. The Alias is then followed by a period, because the INSTANCE part of the signal name is followed by a period. The period is interpreted as normal text.
3. After this, the BASE Alias is entered, followed by an underscore, followed by the EXTENSION Alias and an underscore. Finally, the ATTRIBUTE Alias is added. ControlWave signal names are constructed like that in the OpenEnterprise database. Now, when we open this display as an OEMenus Target, as long as we send the instance, base, extension and attribute values as Parameters, this OPC tag will be resolved. Note, we have named this object as VALUETAG. This is necessary for identification when using this display as a Source View for OEMenus to call the Signal View file we created earlier.
1.4.2.3.3 Configure the Custom OEMenu

That is the Dynamic object created. Now, as long as we define values for the Aliases whenever we open this display as a Target of OEMenus, the Size object will pick up the signal's value and display it as a Tank Level. Now we shall consider how to use the display as a Source for OEMenus to open a Signal View file and display the same signal in the Signal View file that is display in this Graphics display.

1. Create an OEMenus Pick Object
2. Define the Target Alias

Graphics Custom Menu

1.4.2.3.3.1 Create an OEMenus Pick Object

This is not the only way to create a Pick object. We could just as easily create a new Dynamic Pick object on the Tank image, but we will create it by using a Command Button.

1. Drop a Command Button onto the page, then open the Properties dialog and select the Pick tab. Select Custom Command from the Action drop-down list, as shown in the example below, then click the Custom button shown highlighted in red on the image.

2. This opens the Menu Editor dialog. For more information on how to create custom OpenEnterprise menus using the OEMenu Editor see the OEMenus documentation. Create a new Menu Command named SIGNAL VIEW. The Target is set to OE Signal View, and the Action is set to Load File with Parameters. Then click the Configure... button to open the Load file with parameters dialog.
Configure the Custom OEMenu

1.4.2.3.3.2 Define the Target Alias

On the **Load file with parameters** dialog, the Target Alias will be the *signalsearch* variable in the Signal View file. We will define this as a string containing multiple resolved Aliases from the Graphics View display file (.GDF extension) we have just created.

1. Firstly, on the **Load File with Parameters** dialog, use the browse button (highlighted in red in the image below) to find the Target Signal View file created previously.

2. Now, type the Target Alias (*searchstring*) into the **Target column or alias** field, and then the first Source Alias (INSTANCE), plus the name of the object into the appropriate fields. Then click the **Insert** button.
3. This adds the INSTANCE Alias to the **Parameter Value** field. Type a period after the INSTANCE Alias in the **Parameter Value** field. Then type the BASE Alias into the Alias field. Leave VALUETAG in the Object name field, because all of the required Aliases are on this one object. Now click the **Insert** button once more.
4. The BASE Alias is added to the Parameter Value field. Type an underscore after the BASE alias in the Parameter Value field. Then type EXTENSION into the Alias, and click the **Insert** button again.
5. The EXTENSION Alias is added to the Parameter Value field. Type an underscore after this Alias as for the BASE Alias. Then enter the ATTRIBUTE Alias in the Alias field and click the **Insert** button.
6. The whole searchstring Parameter Value is now entered. Before closing, click the Add button to add this to the Parameters List.
7. The Parameter name and definition are now entered into the Parameters List. The name of the Object on which the defined Aliases are to be found is also stored in this list.
Configure the Custom OEMenu

1.4.2.3.4 Graphics Menu Runtime Example

To demonstrate how the new Graphics View file that we have created can be a Target and Source for custom OEMenus, we will now create a new custom menu on the original Alarm View file, which calls the new Graphics View file, passing Parameters to it. Then we will open the Signal View file we created in these examples from the OEMenu on the Graphics View file.

1. Create a new custom menu on the Alarm View
2. Select the Alarm View Graphic View menu
3. Select the Graphics View Signal View menu
4. The Signal View is opened

Graphics Custom Menu

1.4.2.3.4.1 Create a new Alarm View menu
1. Open the Alarm View file in OEDesktop and place it into Configure mode (Ctrl-M). Select the Properties context menu.
2. Click the **Edit...** button on the General page.

3. Create a new command called **GRAPHICS VIEW**. Select **Bristol Babcock OpenEnterprise Display** in the Target field and **Load File with Parameters** in the **Action** field. Then click the **Configure** button.
4. Find the Target Signal View file using the browse button. Then type \textit{INSTANCE} into the \textit{Target column or alias to resolve} field, and select the \textit{instance} column from the Column list. Click the \textit{Insert} button, then the \textit{Add} button.
5. The INSTANCE parameter and its definition are entered into the **Parameters** list. Do the same thing with the BASE, EXTENSION and ATTRIBUTE Target parameters, pairing each one with the column of the same name. When this is done click the **OK** button to close the **Load file with parameters** dialog.
Graphics Menu Runtime Example

1.4.2.3.4.2 Select the Alarm View Custom Menu

Load the Alarm View file into the OEDesktop and select the **GRAPHICS VIEW** custom menu option, as shown.
Graphics Menu Runtime Example

1.4.2.3.4.3 Select the Graphics View Custom Menu

The Graphics View file is opened with the Parameters passed, so that the same signal is on view that was selected from the Alarm View. Now select the **LOAD SIGNAL VIEW** button, which contains our custom menu.
Graphics Menu Runtime Example

1.4.2.3.4.4 The Signal View is Opened

The Signal View file is opened with the Parameters now passed from the Graphics View file, so that the same signal is displayed in the Signal View component.
Graphics Menu Runtime Example
2 Index

A
- Accessing ... 4
- Property Pages .. 4
- Ack Alarm ... 14
- Alarm ... 11
- Alarm Bit Column ... 13
- Alarm Data ... 14
- Alarm State ... 12
- Allow Runtime Configuration 6
- Attribute .. 10

B
- Base .. 10

C
- Change Signal Value Dialog 16
- Control ... 11
- Control Bit Column .. 13

E
- Example ... 6
- Exponent .. 6
- Extension ... 10

F
- Floating ... 5
- Point Format .. 5

G
- General Page .. 5

H
- High .. 11
- High high .. 12

L
- Logical ... 11
- Low ... 12
- Low-Low .. 12

M
- Manual ... 11

Manual Bit Column .. 13

O
- OpenBSI Security ... 12
- OpenEnterprise Security 12

P
- Point Format .. 5
- Floating ... 5
- Precision .. 6
- Property Pages .. 4
- Accessing ... 4

Q
- Quality Bits ... 11
- Questionable .. 11

R
- Refresh Rate ... 6
- RTU .. 7, 8, 10
- Runtime Interface ... 13

S
- Set Quality Bits Message 15
- Signal Column .. 13
- Signal Details .. 14
- Signal Details Dialog .. 14
- Signal Filters Page ... 10
- Signal Search Page ... 6
- Signal View Overview 4
- Status Bar Section ... 15

U
- Units Column .. 14

V
- Value Column .. 14

W
- Width ... 5
DISCLAIMER

Bristol, Inc., Bristol Babcock Ltd, Bristol Canada, BBI SA de CV and the Flow Computer Division, are wholly owned subsidiaries of Emerson Electric Co. doing business as Remote Automation Solutions (“RAS”), a division of Emerson Process Management. ROC, FloBoss, ROCLINK, Bristol, Bristol Babcock, ControlWave, TeleFlow and Helicoid are trademarks of RAS. AMS, PlantWeb and the PlantWeb logo are marks of Emerson Electric Co. The Emerson logo is a trademark and service mark of the Emerson Electric Co. All other marks are property of their respective owners.

The contents of this publication are presented for informational purposes only. While every effort has been made to ensure informational accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. RAS reserves the right to modify or improve the designs or specifications of such products at any time without notice. All sales are governed by RAS’ terms and conditions which are available upon request. RAS does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any RAS product remains solely with the purchaser and end-user.

Engineered and supported by:

Remote Automation Solutions,

Blackpole Road, Worcester, WR3 8YB, UK

Registered office: Meridian East, Leicester, LE19 1UX

Registered in England and Wales, Registration No. 00671801

VAT Reg No. GB 705 353 652